Extensions 1→N→G→Q→1 with N=C23 and Q=S3×C32

Direct product G=N×Q with N=C23 and Q=S3×C32
dρLabelID
S3×C2×C62144S3xC2xC6^2432,772

Semidirect products G=N:Q with N=C23 and Q=S3×C32
extensionφ:Q→Aut NdρLabelID
C23⋊(S3×C32) = C3×C6×S4φ: S3×C32/C32S3 ⊆ Aut C2354C2^3:(S3xC3^2)432,760
C232(S3×C32) = S3×C6×A4φ: S3×C32/C3×S3C3 ⊆ Aut C23366C2^3:2(S3xC3^2)432,763
C233(S3×C32) = C3×C6×C3⋊D4φ: S3×C32/C33C2 ⊆ Aut C2372C2^3:3(S3xC3^2)432,709

Non-split extensions G=N.Q with N=C23 and Q=S3×C32
extensionφ:Q→Aut NdρLabelID
C23.(S3×C32) = C32×A4⋊C4φ: S3×C32/C32S3 ⊆ Aut C23108C2^3.(S3xC3^2)432,615
C23.2(S3×C32) = C3×Dic3×A4φ: S3×C32/C3×S3C3 ⊆ Aut C23366C2^3.2(S3xC3^2)432,624
C23.3(S3×C32) = C32×C6.D4φ: S3×C32/C33C2 ⊆ Aut C2372C2^3.3(S3xC3^2)432,479
C23.4(S3×C32) = Dic3×C62central extension (φ=1)144C2^3.4(S3xC3^2)432,708

׿
×
𝔽